Skip to main content

Parameters

ParameterTypeDefaultDescription
model_namestr"BAAI/bge-small-en-v1.5"FastEmbed model name
cache_dirOptional[str]NoneModel cache directory
threadsOptional[int]NoneNumber of threads (auto-detected if None)
providersList[str]["CPUExecutionProvider"]ONNX execution providers
enable_gpuboolFalseEnable GPU acceleration if available
enable_parallel_processingboolTrueEnable parallel text processing
doc_embed_typestr"default"Document embedding type (default, passage)
max_memory_mbOptional[int]NoneMaximum memory usage in MB
model_warmupboolTrueWarm up model on initialization
enable_sparse_embeddingsboolFalseUse sparse embeddings for better performance
sparse_model_nameOptional[str]NoneSparse model name if different from dense

Functions

__init__

Initialize the FastEmbedProvider. Parameters:
  • config (Optional[FastEmbedConfig]): Configuration object
  • **kwargs: Additional configuration options

_setup_providers

Setup ONNX execution providers based on configuration.

_initialize_models

Initialize FastEmbed models.

_warmup_models

Warm up models with sample data.

supported_modes

Get supported embedding modes. Returns:
  • List[EmbeddingMode]: List of supported embedding modes

pricing_info

Get FastEmbed pricing info (local execution is free). Returns:
  • Dict[str, float]: Pricing information

get_model_info

Get information about the current FastEmbed model. Returns:
  • Dict[str, Any]: Model information

_process_embeddings

Process embeddings iterator into list format. Parameters:
  • embeddings_iterator (Iterator[np.ndarray]): Embeddings iterator
Returns:
  • List[List[float]]: Processed embeddings

_embed_batch

Embed a batch of texts using FastEmbed. Parameters:
  • texts (List[str]): List of text strings to embed
  • mode (EmbeddingMode): Embedding mode (affects processing strategy)
Returns:
  • List[List[float]]: List of embedding vectors

_normalize_embeddings

Normalize embeddings to unit length. Parameters:
  • embeddings (List[List[float]]): List of embedding vectors
Returns:
  • List[List[float]]: Normalized embeddings

validate_connection

Validate FastEmbed model is working. Returns:
  • bool: True if model is working

get_performance_info

Get performance and resource usage information. Returns:
  • Dict[str, Any]: Performance information

list_available_models

List available FastEmbed models. Returns:
  • List[Dict[str, Any]]: List of available models

get_cache_info

Get information about model caching. Returns:
  • Dict[str, Any]: Cache information

close

Clean up FastEmbed models and clear memory.

create_bge_small_embedding

Create BGE-small FastEmbed provider (fast and efficient). Parameters:
  • **kwargs: Additional configuration options
Returns:
  • FastEmbedProvider: Configured FastEmbedProvider instance

create_bge_large_embedding

Create BGE-large FastEmbed provider (high quality). Parameters:
  • **kwargs: Additional configuration options
Returns:
  • FastEmbedProvider: Configured FastEmbedProvider instance

create_e5_embedding

Create E5 FastEmbed provider (multilingual). Parameters:
  • **kwargs: Additional configuration options
Returns:
  • FastEmbedProvider: Configured FastEmbedProvider instance

create_sparse_embedding

Create sparse embedding provider for efficiency. Parameters:
  • **kwargs: Additional configuration options
Returns:
  • FastEmbedProvider: Configured FastEmbedProvider instance

create_gpu_accelerated_embedding

Create GPU-accelerated FastEmbed provider. Parameters:
  • model_name (str): Model name to use
  • **kwargs: Additional configuration options
Returns:
  • FastEmbedProvider: Configured FastEmbedProvider instance
I