Overview
FastEmbed provides fast, local embedding models powered by ONNX runtime. Supports GPU acceleration, sparse embeddings, and multiple model architectures including BGE, E5, and multilingual models. No API costs - runs entirely locally. Provider Class:FastEmbedProvider
Config Class: FastEmbedConfig
Dependencies
Examples
Parameters
| Parameter | Type | Description | Default | Source |
|---|---|---|---|---|
model_name | str | FastEmbed model name | "BAAI/bge-small-en-v1.5" | Specific |
cache_dir | str | None | Model cache directory | None | Specific |
threads | int | None | Number of threads (auto-detected if None) | None | Specific |
providers | list[str] | ONNX execution providers | ["CPUExecutionProvider"] | Specific |
enable_gpu | bool | Enable GPU acceleration if available | False | Specific |
enable_parallel_processing | bool | Enable parallel text processing | True | Specific |
doc_embed_type | str | Document embedding type (default, passage) | "default" | Specific |
max_memory_mb | int | None | Maximum memory usage in MB | None | Specific |
model_warmup | bool | Warm up model on initialization | True | Specific |
enable_sparse_embeddings | bool | Use sparse embeddings for better performance | False | Specific |
sparse_model_name | str | None | Sparse model name if different from dense | None | Specific |
batch_size | int | Batch size for document embedding | 100 | Base |
max_retries | int | Maximum number of retries on failure | 3 | Base |
normalize_embeddings | bool | Whether to normalize embeddings to unit length | True | Base |
show_progress | bool | Whether to show progress during batch operations | True | Base |

