model_name | str | Gemini embedding model name | "gemini-embedding-001" | Specific |
api_key | str | None | Google AI API key (uses GOOGLE_API_KEY env var if None) | None | Specific |
task_type | str | Embedding task type (RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, etc.) | "SEMANTIC_SIMILARITY" | Specific |
title | str | None | Optional title for context | None | Specific |
enable_safety_filtering | bool | Enable Google’s safety filtering | True | Specific |
safety_settings | Dict[str, str] | Safety filtering settings | Default dict | Specific |
use_vertex_ai | bool | Use Vertex AI API instead of Gemini Developer API | False | Specific |
use_google_cloud_auth | bool | Use Google Cloud authentication | False | Specific |
project_id | str | None | Google Cloud project ID | None | Specific |
location | str | Google Cloud location | "us-central1" | Specific |
api_version | str | API version to use (v1beta, v1, v1alpha) | "v1beta" | Specific |
output_dimensionality | int | None | Output embedding dimension (128-3072) | None | Specific |
embedding_config | Dict[str, Any] | None | Additional embedding configuration | None | Specific |
enable_batch_processing | bool | Enable batch processing optimization | True | Specific |
enable_caching | bool | Enable response caching | False | Specific |
cache_ttl_seconds | int | Cache TTL in seconds | 3600 | Specific |
requests_per_minute | int | Requests per minute limit | 60 | Specific |
batch_size | int | Batch size for document embedding | 100 | Base |
max_retries | int | Maximum number of retries on failure | 3 | Base |
normalize_embeddings | bool | Whether to normalize embeddings to unit length | True | Base |
show_progress | bool | Whether to show progress during batch operations | True | Base |