Overview
Qdrant is a vector similarity search engine and database. It supports embedded, local, and cloud deployments with HNSW and FLAT indexes, plus advanced features like quantization and payload indexing. Provider Class:QdrantProviderConfig Class:
QdrantConfig
Dependencies
Examples
Parameters
| Parameter | Type | Description | Default | Source |
|---|---|---|---|---|
collection_name | str | Name of the collection | "default_collection" | Base |
vector_size | int | Dimension of vectors | Required | Base |
distance_metric | DistanceMetric | Similarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT) | COSINE | Base |
recreate_if_exists | bool | Recreate collection if it exists | False | Base |
default_top_k | int | Default number of results | 10 | Base |
default_similarity_threshold | Optional[float] | Minimum similarity score | None | Base |
connection | ConnectionConfig | Connection configuration | Required | Specific |
index | Union[HNSWIndexConfig, FlatIndexConfig] | Index type configuration | HNSWIndexConfig() | Specific |
quantization_config | Optional[Dict[str, Any]] | Quantization settings | None | Specific |
on_disk_payload | bool | Store payloads on disk | False | Specific |
write_consistency_factor | int | Write consistency factor | 1 | Specific |
shard_number | Optional[int] | Number of shards | None | Specific |
replication_factor | Optional[int] | Replication factor | None | Specific |
payload_field_configs | Optional[List[PayloadFieldConfig]] | Advanced payload field configurations | None | Specific |
dense_vector_name | str | Dense vector field name | "dense" | Specific |
sparse_vector_name | str | Sparse vector field name | "sparse" | Specific |
use_sparse_vectors | bool | Enable sparse vector support | False | Specific |

