Skip to main content

Overview

Qdrant is a vector similarity search engine and database. It supports embedded, local, and cloud deployments with HNSW and FLAT indexes, plus advanced features like quantization and payload indexing. Provider Class: QdrantProvider
Config Class: QdrantConfig

Dependencies

pip install "upsonic[rag]"

Examples

from upsonic import Agent, Task, KnowledgeBase
from upsonic.embeddings.openai_provider import OpenAIEmbeddingProvider
from upsonic.vectordb import QdrantProvider, QdrantConfig, ConnectionConfig, Mode, HNSWIndexConfig

# Setup embedding provider
embedding = OpenAIEmbeddingProvider(api_key="your-api-key")

# Embedded mode
config = QdrantConfig(
    collection_name="my_collection",
    vector_size=1536,
    connection=ConnectionConfig(mode=Mode.EMBEDDED, db_path="./qdrant_db"),
    index=HNSWIndexConfig(m=16, ef_construction=200),
    on_disk_payload=False
)
vectordb = QdrantProvider(config)

# Create knowledge base
kb = KnowledgeBase(
    sources="document.pdf",
    embedding_provider=embedding,
    vectordb=vectordb
)

# Use with Agent
agent = Agent("openai/gpt-4o")
task = Task(
    description="Find relevant information",
    context=[kb]
)
result = agent.do(task)

Parameters

ParameterTypeDescriptionDefaultSource
collection_namestrName of the collection"default_collection"Base
vector_sizeintDimension of vectorsRequiredBase
distance_metricDistanceMetricSimilarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT)COSINEBase
recreate_if_existsboolRecreate collection if it existsFalseBase
default_top_kintDefault number of results10Base
default_similarity_thresholdOptional[float]Minimum similarity scoreNoneBase
connectionConnectionConfigConnection configurationRequiredSpecific
indexUnion[HNSWIndexConfig, FlatIndexConfig]Index type configurationHNSWIndexConfig()Specific
quantization_configOptional[Dict[str, Any]]Quantization settingsNoneSpecific
on_disk_payloadboolStore payloads on diskFalseSpecific
write_consistency_factorintWrite consistency factor1Specific
shard_numberOptional[int]Number of shardsNoneSpecific
replication_factorOptional[int]Replication factorNoneSpecific
payload_field_configsOptional[List[PayloadFieldConfig]]Advanced payload field configurationsNoneSpecific
dense_vector_namestrDense vector field name"dense"Specific
sparse_vector_namestrSparse vector field name"sparse"Specific
use_sparse_vectorsboolEnable sparse vector supportFalseSpecific