Skip to main content

Overview

Qdrant is a vector similarity search engine and database. It supports embedded, local, and cloud deployments with HNSW and FLAT indexes, plus advanced features like quantization and payload indexing. Provider Class: QdrantProvider
Config Class: QdrantConfig

Dependencies

pip install "upsonic[rag]"

Examples

from upsonic import Agent, Task, KnowledgeBase
from upsonic.embeddings.openai_provider import OpenAIEmbeddingProvider
from upsonic.vectordb import QdrantProvider, QdrantConfig, ConnectionConfig, Mode, HNSWIndexConfig

# Setup embedding provider
embedding = OpenAIEmbeddingProvider(api_key="your-api-key")

# Embedded mode
config = QdrantConfig(
    collection_name="my_collection",
    vector_size=1536,
    connection=ConnectionConfig(mode=Mode.EMBEDDED, db_path="./qdrant_db"),
    index=HNSWIndexConfig(m=16, ef_construction=200),
    on_disk_payload=False
)
vectordb = QdrantProvider(config)

# Create knowledge base
kb = KnowledgeBase(
    sources="document.pdf",
    embedding_provider=embedding,
    vectordb=vectordb
)

# Use with Agent
agent = Agent("openai/gpt-4o")
task = Task(
    description="Find relevant information",
    context=[kb]
)
result = agent.do(task)

Parameters

Base Parameters (from BaseVectorDBConfig)

ParameterTypeDescriptionDefaultRequired
collection_namestrName of the collection"default_collection"No
vector_sizeintDimension of vectors-Yes
distance_metricDistanceMetricSimilarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT)COSINENo
recreate_if_existsboolRecreate collection if it existsFalseNo
default_top_kintDefault number of results10No
default_similarity_thresholdOptional[float]Minimum similarity score (0.0-1.0)NoneNo
dense_search_enabledboolEnable dense vector searchTrueNo
full_text_search_enabledboolEnable full-text searchTrueNo
hybrid_search_enabledboolEnable hybrid searchTrueNo
default_hybrid_alphafloatDefault alpha for hybrid search (0.0-1.0)0.5No
default_fusion_methodLiteral['rrf', 'weighted']Default fusion method for hybrid search'weighted'No
provider_nameOptional[str]Provider nameNoneNo
provider_descriptionOptional[str]Provider descriptionNoneNo
provider_idOptional[str]Provider IDNoneNo
default_metadataOptional[Dict[str, Any]]Default metadata for all recordsNoneNo
auto_generate_content_idboolAuto-generate content IDsTrueNo
indexed_fieldsOptional[List[Union[str, Dict[str, Any]]]]Fields to index for filteringNoneNo

Qdrant-Specific Parameters

ParameterTypeDescriptionDefaultRequired
connectionConnectionConfigConnection configuration (mode, db_path, etc.)-Yes
indexUnion[HNSWIndexConfig, FlatIndexConfig]Index type configuration (IVF not supported)HNSWIndexConfig()No
quantization_configOptional[Dict[str, Any]]Quantization settingsNoneNo
on_disk_payloadboolStore payloads on diskFalseNo
write_consistency_factorintWrite consistency factor1No
shard_numberOptional[int]Number of shardsNoneNo
replication_factorOptional[int]Replication factorNoneNo
payload_field_configsOptional[List[PayloadFieldConfig]]Advanced payload field configurations with typesNoneNo
dense_vector_namestrDense vector field name"dense"No
sparse_vector_namestrSparse vector field name"sparse"No
use_sparse_vectorsboolEnable sparse vector support (requires hybrid_search_enabled=True)FalseNo

ConnectionConfig Parameters

ParameterTypeDescriptionDefaultRequired
modeModeConnection mode (EMBEDDED, LOCAL, CLOUD, IN_MEMORY)-Yes
db_pathOptional[str]Path for embedded/local storageNoneRequired for EMBEDDED
hostOptional[str]Host addressNoneRequired for LOCAL
portOptional[int]Port numberNoneRequired for LOCAL
api_keyOptional[SecretStr]API key for cloud/localNoneRequired for CLOUD
urlOptional[str]Full connection URLNoneNo
use_tlsboolUse TLS encryptionTrueNo
grpc_portOptional[int]gRPC portNoneNo
prefer_grpcboolPrefer gRPC over HTTPFalseNo
httpsOptional[bool]Use HTTPSNoneNo
prefixOptional[str]URL path prefixNoneNo
timeoutOptional[float]Request timeout in secondsNoneNo
locationOptional[str]Special location stringNoneNo