Overview
FAISS (Facebook AI Similarity Search) is a library for efficient similarity search and clustering of dense vectors. It supports local file-based storage with HNSW, IVF_FLAT, and FLAT index types, plus quantization options. Provider Class:FaissProviderConfig Class:
FaissConfig
Dependencies
Examples
Parameters
Base Parameters (from BaseVectorDBConfig)
| Parameter | Type | Description | Default | Required |
|---|---|---|---|---|
collection_name | str | Name of the collection | "default_collection" | No |
vector_size | int | Dimension of vectors | - | Yes |
distance_metric | DistanceMetric | Similarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT) | COSINE | No |
recreate_if_exists | bool | Recreate collection if it exists | False | No |
default_top_k | int | Default number of results | 10 | No |
default_similarity_threshold | Optional[float] | Minimum similarity score (0.0-1.0) | None | No |
dense_search_enabled | bool | Enable dense vector search | True | No |
full_text_search_enabled | bool | Enable full-text search | True | No |
hybrid_search_enabled | bool | Enable hybrid search | True | No |
default_hybrid_alpha | float | Default alpha for hybrid search (0.0-1.0) | 0.5 | No |
default_fusion_method | Literal['rrf', 'weighted'] | Default fusion method for hybrid search | 'weighted' | No |
provider_name | Optional[str] | Provider name | None | No |
provider_description | Optional[str] | Provider description | None | No |
provider_id | Optional[str] | Provider ID | None | No |
default_metadata | Optional[Dict[str, Any]] | Default metadata for all records | None | No |
auto_generate_content_id | bool | Auto-generate content IDs | True | No |
indexed_fields | Optional[List[Union[str, Dict[str, Any]]]] | Fields to index for filtering | None | No |
FAISS-Specific Parameters
| Parameter | Type | Description | Default | Required |
|---|---|---|---|---|
db_path | Optional[str] | Path for persistent storage (required except in-memory) | None | No |
index | IndexConfig | Index type configuration (HNSWIndexConfig, IVFIndexConfig, FlatIndexConfig) | HNSWIndexConfig() | No |
normalize_vectors | bool | Auto-normalize vectors for cosine similarity (must be True for COSINE metric) | True | No |
quantization_type | Optional[Literal['scalar', 'product']] | Quantization method for compression | None | No |
quantization_bits | int | Bits for quantization | 8 | No |

