Overview
FAISS (Facebook AI Similarity Search) is a library for efficient similarity search and clustering of dense vectors. It supports local file-based storage with HNSW, IVF_FLAT, and FLAT index types, plus quantization options. Provider Class:FaissProviderConfig Class:
FaissConfig
Dependencies
Examples
Parameters
| Parameter | Type | Description | Default | Source |
|---|---|---|---|---|
collection_name | str | Name of the collection | "default_collection" | Base |
vector_size | int | Dimension of vectors | Required | Base |
distance_metric | DistanceMetric | Similarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT) | COSINE | Base |
recreate_if_exists | bool | Recreate collection if it exists | False | Base |
default_top_k | int | Default number of results | 10 | Base |
default_similarity_threshold | Optional[float] | Minimum similarity score | None | Base |
db_path | Optional[str] | Path for persistent storage | None | Specific |
index | IndexConfig | Index type configuration | HNSWIndexConfig() | Specific |
normalize_vectors | bool | Auto-normalize vectors for cosine similarity | True | Specific |
quantization_type | Optional[Literal['scalar', 'product']] | Quantization method | None | Specific |
quantization_bits | int | Bits for quantization | 8 | Specific |

