Skip to main content

Overview

Character splitter splits text using a single, specified separator. Ideal for documents with clear and consistent delimiters. Uses a direct “Split and Merge” process for efficiency and positional integrity. Splitter Class: CharacterChunker Config Class: CharacterChunkingConfig

Dependencies

No additional dependencies required. Uses standard library.

Examples

from upsonic import Agent, Task, KnowledgeBase
from upsonic.loaders import TextLoader, TextLoaderConfig
from upsonic.embeddings import OpenAIEmbedding, OpenAIEmbeddingConfig
from upsonic.text_splitter import CharacterChunker, CharacterChunkingConfig
from upsonic.vectordb import ChromaProvider, ChromaConfig, ConnectionConfig, Mode

# Configure splitter
splitter_config = CharacterChunkingConfig(
    chunk_size=512,
    chunk_overlap=50,
    separator="\n\n"
)
splitter = CharacterChunker(splitter_config)

# Setup KnowledgeBase
loader = TextLoader(TextLoaderConfig())
embedding = OpenAIEmbedding(OpenAIEmbeddingConfig())
vectordb = ChromaProvider(ChromaConfig(
    collection_name="character_docs",
    vector_size=1536,
    connection=ConnectionConfig(mode=Mode.IN_MEMORY)
))

kb = KnowledgeBase(
    sources=["document.txt"],
    embedding_provider=embedding,
    vectordb=vectordb,
    loaders=[loader],
    splitters=[splitter]
)

# Query with Agent
agent = Agent("openai/gpt-4o")
task = Task("What are the key sections?", context=[kb])
result = agent.do(task)
print(result)

Parameters

ParameterTypeDescriptionDefaultSource
chunk_sizeintTarget size of each chunk1024Base
chunk_overlapintOverlapping units between chunks200Base
min_chunk_sizeint | NoneMinimum size for a chunkNoneBase
length_functionCallable[[str], int]Function to measure text lengthlenBase
strip_whitespaceboolStrip leading/trailing whitespaceFalseBase
separatorstrSingle separator string or regex"\n\n"Specific
is_separator_regexboolTreat separator as regexFalseSpecific
keep_separatorboolKeep separator in chunksTrueSpecific