Skip to main content

Overview

Markdown loader processes Markdown files with support for YAML front matter parsing, code block extraction, and heading-based document splitting. Preserves structure and metadata. Loader Class: MarkdownLoader Config Class: MarkdownLoaderConfig

Dependencies

pip install "upsonic[loaders]"

Examples

from upsonic import Agent, Task, KnowledgeBase
from upsonic.loaders import MarkdownLoader, MarkdownLoaderConfig
from upsonic.embeddings import OpenAIEmbedding, OpenAIEmbeddingConfig
from upsonic.text_splitter import RecursiveChunker, RecursiveChunkingConfig
from upsonic.vectordb import ChromaProvider, ChromaConfig, ConnectionConfig, Mode

# Configure loader
loader_config = MarkdownLoaderConfig(
    parse_front_matter=True,
    include_code_blocks=True,
    split_by_heading="h2"
)
loader = MarkdownLoader(loader_config)

# Setup KnowledgeBase
embedding = OpenAIEmbedding(OpenAIEmbeddingConfig())
chunker = RecursiveChunker(RecursiveChunkingConfig())
vectordb = ChromaProvider(ChromaConfig(
    collection_name="markdown_docs",
    vector_size=1536,
    connection=ConnectionConfig(mode=Mode.IN_MEMORY)
))

kb = KnowledgeBase(
    sources=["document.md"],
    embedding_provider=embedding,
    vectordb=vectordb,
    loaders=[loader],
    splitters=[chunker]
)

# Query with Agent
agent = Agent("openai/gpt-4o")
task = Task("Extract all code examples", context=[kb])
result = agent.do(task)
print(result)

Parameters

ParameterTypeDescriptionDefaultSource
encodingstr | NoneFile encoding (auto-detected if None)NoneBase
error_handling"ignore" | "warn" | "raise"How to handle loading errors”warn”Base
include_metadataboolWhether to include file metadataTrueBase
custom_metadatadictAdditional metadata to includeBase
max_file_sizeint | NoneMaximum file size in bytesNoneBase
skip_empty_contentboolSkip documents with empty contentTrueBase
parse_front_matterboolParse YAML front matterTrueSpecific
include_code_blocksboolInclude code block contentTrueSpecific
code_block_language_metadataboolAdd code block language as metadataTrueSpecific
heading_metadataboolExtract headings and add to metadataTrueSpecific
split_by_heading"h1" | "h2" | "h3" | NoneSplit file by heading levelNoneSpecific