Skip to main content

Overview

Pinecone is a managed vector database service designed for production-scale similarity search. It’s cloud-only and supports both dense and sparse vectors with automatic scaling. Provider Class: PineconeProvider
Config Class: PineconeConfig

Dependencies

pip install "upsonic[rag]"

Examples

from upsonic import Agent, Task, KnowledgeBase
from upsonic.embeddings.openai_provider import OpenAIEmbeddingProvider
from upsonic.vectordb import PineconeProvider, PineconeConfig
from pydantic import SecretStr

# Setup embedding provider
embedding = OpenAIEmbeddingProvider(api_key="your-api-key")

# Create Pinecone configuration
config = PineconeConfig(
    collection_name="my_collection",
    vector_size=1536,
    api_key=SecretStr("your-pinecone-api-key"),
    environment="us-east-1-aws",
    namespace="production"
)
vectordb = PineconeProvider(config)

# Create knowledge base
kb = KnowledgeBase(
    sources="document.pdf",
    embedding_provider=embedding,
    vectordb=vectordb
)

# Use with Agent
agent = Agent("openai/gpt-4o")
task = Task(
    description="Query the knowledge base",
    context=[kb]
)
result = agent.do(task)

Parameters

ParameterTypeDescriptionDefaultSource
collection_namestrName of the collection"default_collection"Base
vector_sizeintDimension of vectorsRequiredBase
distance_metricDistanceMetricSimilarity metric (COSINE, EUCLIDEAN, DOT_PRODUCT)COSINEBase
recreate_if_existsboolRecreate collection if it existsFalseBase
default_top_kintDefault number of results10Base
default_similarity_thresholdOptional[float]Minimum similarity scoreNoneBase
api_keySecretStrPinecone API keyRequiredSpecific
specOptional[Union[Dict, ServerlessSpec, PodSpec]]Index specificationNoneSpecific
environmentOptional[str]Environment/region (backward compatibility)NoneSpecific
namespaceOptional[str]Namespace for data isolationNoneSpecific
metricLiteral['cosine', 'euclidean', 'dotproduct']Distance metric'cosine'Specific
podsOptional[int]Number of pods (PodSpec)NoneSpecific
pod_typeOptional[str]Pod type specificationNoneSpecific
replicasOptional[int]Number of replicas (PodSpec)NoneSpecific
shardsOptional[int]Number of shards (PodSpec)NoneSpecific
use_sparse_vectorsboolEnable sparse vector supportFalseSpecific
batch_sizeintBatch size for upsert operations100Specific
timeoutOptional[int]Request timeout in secondsNoneSpecific