description | str | (required) | A clear statement of what the task entails |
attachments | List[str] | None | None | List of file paths to attach to the task |
tools | list[Any] | None | None | The tools/resources the agent can use for this task |
response_format | Union[Type[BaseModel], type[str], None] | str | The expected output format (string or Pydantic model) |
response_lang | str | None | "en" | Language for the response |
context | Any | None | None | Context for this task (files, images, knowledge bases, etc.) |
enable_thinking_tool | bool | None | None | Enable thinking tool for complex reasoning |
enable_reasoning_tool | bool | None | None | Enable reasoning tool for multi-step analysis |
guardrail | Callable | None | None | Function to validate task output before proceeding |
guardrail_retries | int | None | None | Maximum number of retries when guardrail validation fails |
enable_cache | bool | False | Whether to enable caching for this task |
cache_method | str | "vector_search" | Method to use for caching: ‘vector_search’ or ‘llm_call’ |
cache_threshold | float | 0.7 | Similarity threshold for cache hits (0.0-1.0) |
cache_embedding_provider | Any | None | None | Embedding provider for vector search caching |
cache_duration_minutes | int | 60 | How long to cache results in minutes |
durable_execution | Any | None | None | DurableExecution instance for checkpoint recovery |
vector_search_top_k | int | None | None | Number of top results to return from vector search (for RAG/knowledge base) |
vector_search_alpha | float | None | None | Hybrid search alpha parameter (0.0 = keyword only, 1.0 = vector only) |
vector_search_fusion_method | Literal[‘rrf’, ‘weighted’] | None | None | Method to fuse vector and keyword search results |
vector_search_similarity_threshold | float | None | None | Minimum similarity score threshold for vector search results |
vector_search_filter | Dict[str, Any] | None | None | Metadata filters to apply to vector search results |